stichting mathematisch centrum

AFDELING MATHEMATISCHE BESLISKUNDE (DEPARTMENT OF OPERATIONS RESEARCH)

BW 85/77

NOVEMBER

A. FEDERGRUEN, A. HORDIJK & H.C. TIJMS

A NOTE ON SIMULTANEOUS RECURRENCE CONDITIONS ON A SET OF DENUMERABLE STOCHASTIC MATRICES

Preprint

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

A note on simultaneous recurrence conditions on a set of denumerable stochastic matrices *

bу

A. Federgruen, A. Hordijk ** & H.C. Tijms ***

ABSTRACT

In this paper we consider a set of denumerable stochastic matrices where the parameter set is a compact metric space. We give a number of simultaneous recurrence conditions on the stochastic matrices and establish equivalences between these conditions. The results obtained generalize corresponding results in Markov chain theory to a considerable extent and have applications in stochastic control problems.

KEY WORDS & PHRASES: compact metric set of denumerable stochastic matrices, simultaneous recurrence conditions, Doeblin condition, scrambling condition, quasi-compactness condition, equivalences

^{*} This report will be submitted for publication elsewhere

Rijksuniversiteit Leiden, Leiden, The Netherlands

^{***} Vrije Universiteit, Amsterdam, The Netherlands

1. INTRODUCTION

We consider a set $P = (P(f), f \in F)$ of stochastic matrices $P(f) = (p_{ij}(f))$, $i,j \in I$ having a denumerable state space I where the parameter set F is a compact metric space. Note that, for any $f \in F$, $p_{ij}(f) \ge 0$ and $\sum_{j \in I} p_{ij}(f) = 1$. It is assumed that for any $i,j \in I$ the function $p_{ij}(f)$ is continuous on F. Further, we assume that for any $f \in F$ the stochastic matrix P(f) has no two disjoint closed sets of states.

For any $f \in F$, denote by the stochastic matrix $P^n(f) = (p_{ij}^n(f), i, j \in I)$ the n-fold matrix product of P(f) with itself for $n = 1, 2, \ldots$. Note that for any $i, j \in I$ and $n \ge 1$ the function $p_{ij}^n(f)$ is continuous on F. For any $i_0 \in I$, $A \subseteq I$ and $f \in F$, define the taboo probability

(1)
$$t_{i_0A}^n(f) = \sum_{i_1,...,i_n \in I \setminus A} p_{i_0i_1}(f) \dots p_{i_{n-1}i_n}(f), \quad n = 1,2,....$$

i.e. $t_{iA}^n(f)$ is the probability that under the stochastic matrix P(f) the first return to the set A takes more than n transitions starting from state i. For any $i \in I$, $A \subseteq I$ and $f \in F$, define the (possibly infinite) mean recurrence time

(2)
$$\mu_{iA}(f) = 1 + \sum_{n=1}^{\infty} t_{iA}^{n}(f).$$

We write $t_{iA}^n(f) = t_{ij}(f)$ and $\mu_{iA}(f) = \mu_{ij}(f)$ for $A = \{j\}$. Consider now the following simultaneous recurrence conditions on the set $P = (P(f), f \in F)$.

C1. There is a finite set K and a finite number B such that

$$\mu_{iK}(f) \leq B \text{ for all } i \in I \text{ and } f \in F.$$

C2. There is a finite set K, an integer $\nu \geq 1$ and a number $\rho > 0$ such that

$$\sum_{\mathbf{j} \in K} p_{\mathbf{i}\mathbf{j}}^{\vee}(\mathbf{f}) \geq \rho \text{ for all } \mathbf{i} \in \mathbf{I} \text{ and } \mathbf{f} \in \mathbf{F}.$$

C3. There is an integer $v \ge 1$ and a number $\rho = 0$ such that

$$\sum_{\mathbf{j} \in \mathbf{I}} \min [\mathbf{p}_{\mathbf{i}_{1} \mathbf{j}}^{\mathbf{v}}(\mathbf{f}), \mathbf{p}_{\mathbf{i}_{2} \mathbf{j}}^{\mathbf{v}}(\mathbf{f})] \geq \rho \text{ for all } \mathbf{i}_{1}, \mathbf{i}_{2} \in \mathbf{I} \text{ and } \mathbf{f} \in \mathbf{F}.$$

C4. There is an integer $v \ge 1$ and a number $\rho > 0$ such that for any $f \in F$ a probability distribution $\{\pi_j(f), j \in I\}$ (say) exists for which

(3)
$$\left| \sum_{j \in A} p_{ij}^{n}(f) - \sum_{j \in A} \pi_{j}(f) \right| \leq (1-\rho)^{\lceil n/\nu \rceil} \text{ for all } i \in I, A \subset I$$
 and $n \geq 1$.

where [x] denotes the largest integer less than or equal to x.

- C5. For any f ϵ F there is a probability distribution $\{\pi_j(f), j \in I\}$ such that
- (4) $p_{\mathbf{i}\mathbf{j}}^{\mathbf{n}}(\mathbf{f}) \rightarrow \pi_{\mathbf{j}}(\mathbf{f}) \text{ uniformly in } (\mathbf{i},\mathbf{f}) \in \mathbf{I} \times \mathbf{F} \text{ as } \mathbf{n} \rightarrow \infty$ for any $\mathbf{j} \in \mathbf{I}$.
- C6. There is a finite number B such that for any f ε F a state $\boldsymbol{s}_{\mathbf{f}}$ exists for which

$$\mu_{is_f}(f) \leq B \text{ for all } i \in I.$$

C7. There is a finite set K and a finite number B such that for any f ϵ F a state $\mathbf{s_f}$ ϵ K exists for which

$$\mu_{is_f}(f) \leq B \text{ for all } i \in I.$$

C8. There is an integer $\nu \geq 1$ and a number $\rho > 0$ such that for any $f \in F$ a state s_f exists for which

$$p_{is_f}^{v}(f) \ge \rho \text{ for all } i \in I.$$

C9. There is a finite set K, an integer $v \ge 1$ and a number $\rho > 0$ such that for any $f \in F$ a state $s_f \in K$ exists for which

$$p_{is_f}^{V}(f) \ge \rho \text{ for all } i \in I.$$

We note that in C4 the condition $\sum_{j \in I} |p_{ij}^n(f) - \pi_j(f)| \le 2(1-\rho)^{\lceil n/\nu \rceil}$ for all $i \in I$, $f \in F$ and $n \ge 1$ may be equivalently stated instead of (3). The following two theorems were obtained in [4] and [2] (cf. also [3]).

THEOREM 1. The conditions C1 and C2 are equivalent.

THEOREM 2.

- (i) If the stochastic matrix P(f) is aperiodic for each $f \in F$, then the condition C2 implies the condition C3.
- (ii) The condition C3 implies the condition C4.

In this paper we shall prove the following additional relations.

THEOREM 3.

- (i) The condition C5 implies both condition C2 and C9.
- (ii) The conditions C3, C4, C5, C8 and C9 are equivalent.

THEOREM 4.

- (i) The condition C2 implies the condition C7.
- (ii) The condition C6 implies the condition C7.
- (iii) The conditions ${\rm C1}$, ${\rm C2}$, ${\rm C6}$ and ${\rm C7}$ are equivalent.
- (iv) If the stochastic matrix P(f) is aperiodic for each $f \in F$, then the conditions C1-C9 are equivalent.

In case the set P consists of a single stochastic matrix, the conditions C2, C3 and C4-C5 are known in Markov chain theory as the Doeblin, the scrambling and the quasi-compactness (or strong ergodicity) condition respectively, and the above equivalences may be found, albeit in a scattered way, in the literature, cf. p.197 in [1], p.142 in [5], p.226 in [6] and p.185 in [7]. The above results generalize the corresponding results in Markov chain theory to a considerable extent and have applications amongst others in semi-Markov decision problems, cf. [2] - [4].

2. PROOFS

In this section we prove the Theorems 3 and 4.

Proof of Theorem 3. (i) Suppose that condition C5 holds. Since for any $i,j \in I$ and $n \ge l$ the function $p_{i,j}^n(f)$ is continuous on F, it follows from (4) that for any $j \in I$ the function $\pi_j(f)$ is continuous in $f \in F$. Now, let $\{K_n, n=1, 2, \ldots\}$ be a sequence of finite sets $K_n \subset I$ such that $K_{n+1} \supseteq K_n$ for all $n \ge l$ and $\lim_{n \to \infty} K_n = I$. Let $a_n(f) = \sum_{j \in K_n} \pi_j(f)$ for $n \ge l$ and $f \in F$. Then the function $a_n(f)$ is continuous in $f \in F$ for any $f \in F$ we have $a_{n+1}(f) \ge a_n(f)$ for all $f \in F$ and $f \in F$. Now, since F is compact, we have by Theorem 7.13 in [8] that $a_n(f)$ converges to $f \in F$ and $f \in F$ as $f \in F$. Hence for each $f \in F$ this shows that we can find a finite set K and a number $f \in F$ such that

(5)
$$\sum_{j \in K} \pi_{j}(f) \geq \delta \quad \text{for all } f \in F.$$

By (4) and the finiteness of K, we can find an integer $\nu \geq 1$ such that $p_{ij}^{\nu}(f) \geq \pi_j(f) - \delta/2|K|$ for all $i \in I$, $f \in F$ and $j \in K$ where |K| denotes the number of states in K. Together this inequality and (5) imply condition C2. Further we get from (5) that for any $f \in F$ there is a state f such that f is such that f such that f such that f such that f is such that f such that f such that f is such that f such that f is such that f such that f is such

(ii) Since C9 implies C8 and in its turn C8 implies C3 and since C4 implies C5, this part follows by using part (ii) of Theorem 2 and part (i) of Theorem 3.

Proof of Theorem 4. To prove this Theorem, we shall use a classical perturbation of the stochastic matrices P(f), $f \in F$. Fix any number τ with $0 < \tau \le 1$ and let $\overline{P} = (\overline{P}(f), f \in F)$ be the set of stochastic matrices $\overline{P}(f) = (\overline{P}_{ij}(f))$, $i, j \in I$ such that for any $f \in F$ and $i, j \in I$

$$\bar{p}_{ij}(f) = \begin{cases} \tau p_{ij}(f) & \text{for } j \neq i \\ \\ 1 - \tau + \tau p_{ii}(f) & \text{for } j = i \end{cases}$$

Note that, by $p_{ii}(f) \geq 1 - \tau > 0$ for all $i \in I$ and $f \in F$, the stochastic matrix $\overline{P}(f)$ is aperiodic for all $f \in F$. Also note that for any $i, j \in I$ the function $\overline{p}_{ij}(f)$ is continuous in $f \in F$ and for any $f \in F$, the stochastic matrix $\overline{P}(f)$ has no two disjoint closed sets. Define for the stochastic matrices $\overline{P}(f)$ the taboo probabilities $\overline{t}_{iA}^n(f)$ and the mean recurrence times $\overline{\mu}_{iA}(f)$ as in (1) and (2). By induction on n, it is straightforward to verify that for any $f \in F$

where $t_{ij}^{0}(f) = t_{ij}^{0}(f) = 1$. From the relations (2) and (6) we get

We note that this relation in intuitively clear by a direct probabilistic interpretation.

We now prove (i). Suppose that the condition C2 holds with triple (K, ν, ρ) . Then, by $\bar{p}_{ij}(f) \ge \tau p_{ij}(f)$ for all $i, j \in I$ and $f \in F$, we have

$$\sum_{\mathbf{j} \in K} \bar{p}_{\mathbf{i}\mathbf{j}}(\mathbf{f}) \geq \tau^{\nu} \sum_{\mathbf{j} \in K} p_{\mathbf{i}\mathbf{j}}^{\nu}(\mathbf{f}) \geq \tau^{\nu} \rho \quad \text{for all } \mathbf{i} \in \mathbf{I} \text{ and } \mathbf{f} \in \mathbf{F}.$$

Hence the condition C2 applies to the set $\overline{P} = (P(f), f \in F)$. Moreover we have that any stochastic matrix $\overline{P}(f)$, $f \in F$ is aperiodic. Now, by Theorem 2 and part (i) of Theorem 3, it follows that condition C9 applies to the set \overline{P} . Since condition C9 implies C7, we have that condition C7 applies to the set \overline{P} . Now, by invoking (7), it follows that the condition C7 holds for the set $P = (P(f), f \in F)$ as was to be proved.

Next we prove (ii). Suppose that condition C6 holds. Then, by invoking again (7), we have that condition C6 applies to the set \overline{P} . Hence there is a finite number B such that for any $f \in F$ there exists a state

s_f such that

(8)
$$\bar{\mu}_{is_f}(f) = 1 + \sum_{n=1}^{\infty} \bar{t}_{is_f}^n(f) \le B \text{ for all } i \in I.$$

Fix now 0 < γ < 1. Since for any f ϵ F and i ϵ I the taboo probability $\overline{t}_{is_f}^n$ (f) is non-increasing in n, it follows that there is an integer N \geq 1 such that

(9)
$$\bar{t}_{is_f}^N(f) \leq \gamma$$
 for all $i \in I$ and $f \in F$.

(Supposing the contrary to (9) gives a contradiction with (8)). Together the inequality (9) and the fact that $\bar{p}_{kk}(f) \geq 1 - \tau$ for all $k \in I$ and $f \in F$ imply

$$p_{is_f}^{-N}(f) \ge (1-\tau)^{N-1}(1-\gamma)$$
 for all $i \in I$ and $f \in F$.

This shows that condition C8 applies to the set \overline{P} . Next, by part (ii) of Theorem 3, condition C9 applies to the set \overline{P} . Since C9 implies C7, it follows that condition C7 applies to the set \overline{P} . Now by invoking again (7) we have that condition C7 holds for the stochastic matrices P(f), $f \in F$ as was to be verified.

We obtain part (iii) of the Theorem by noting that C7 trivially implies both C1 and C6 and using Theorem 1 and the parts (i) - (ii) of Theorem 4. Finally, part (iv) of the Theorem is an immediate consequence of the Theorems 2-3 and part (iii) of Theorem 4.

REFERENCES

- [1] DOOB, J.L. (1953), Stochastic processes, Wiley, New York.
- [2] FEDERGRUEN, A. & H.C. TIJMS, (1977), The optimality equation in average cost denumerable state semi-Markov decision problems, recurrency conditions and algorithms, (to appear in the Juneissue of Vol.15 of J. Appl. Prob.).

- [3] FEDERGRUEN, A., HORDIJK, A. & H.C. TIJMS, (1977), Recurrence conditions in denumerable state Markov decision processes, Report BW 81/77, Mathematisch Centrum Amsterdam (to appear in the Proceedings of the International Conference on Dynamic Programming, Vancouver 1977, to be published by Academic Press).
- [4] HORDIJK, A., (1974), Dynamic programming and Markov potential theory,

 Mathematical Centre Tract, no.51, Mathematisch Centrum Amsterdam.
- [5] HUANG, C., ISAACSON, D. & B. VINOGRADE, (1976), The rate of convergence of certain nonhomogeneous Markov chains, Z. Wahrschein-lichkeitstheorie verw. Geb. 35, 141-146.
- [6] ISAACSON, D., & R. MADSEN, (1974), Positive columns for stochastic matrices, J. Appl. Prob. 11, 829-835.
- [7] NEVEU, J., (1965), Mathematical foundations of the calculus of probability, Holden-Day, San Francisco.
- [8] RUDIN, W., (1964), Principles of mathematical analysis (2nd. ed.), McGraw Hill, New York.